Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

نویسندگان

  • Quan Zhang
  • Dong Yan
  • Kai Zhang
  • Gengkai Hu
چکیده

A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pop-up assembly of 3D structures actuated by heat shrinkable polymers

Folding 2D sheets into desired 3D structures is a promising fabrication technique that can find a wide range of applications. Compressive buckling provides an attractive strategy to actuate the folding and can be applied to a broad range of materials. Here a new and simple method is reported to achieve controlled compressive buckling, which is actuated by a heat shrinkable polymer sheet. The bu...

متن کامل

A Review of the Recent Advances and Application of 3D Printing in Pharmacy and Drug Delivery

 Throughout human history, the most valuable inventions have been those that, even decades after their initial introduction, affected the lives of people around the world. 3D printers similar to steam engines, light bulbs, and the World Wide Web are thought to be among the inventions that will revolutionize the future of different industries. This technology is generally introduced as the manuf...

متن کامل

Bioprinting in Vascularization Strategies

Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...

متن کامل

Multi-shape active composites by 3D printing of digital shape memory polymers

Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015